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ABSTRACT

In this paper we consider the p)roblem of using reduced order dynamic com-

pensators to control a class of nonlinear parabolic distributed parameter sys-

tems. We concentrate on a system wi)hl unbounded input and output operators

governed by Burgers' equation. We use a linearized model to compute low-

order-finite-dimensional control laws by minimizing certain energy function-

als. We then apply these laws to the nonlinear model. Standard approaches

to this p)roblem employ model/controller redurtion techniques in conjunction

with LQG theory. The approach used here is based on the finite-dimensional

Bernstein/Hyland optimal projection theory which yields a fixed-finite-order

controller.
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1 Introduction

In recent years considerable attention has been devoted to the problem
of using feedback to control fluid dynamic systems. This problem is com-
plex and particularly difficult when one is faced with phenomena such as
shocks. Moreover, these systems are governed by nonlinear partial differen-
tial equations so that the natural state of the system is infinite dimensional.
If one assumes that "full state feedback" is necessary to design practical
controllers, then one would conclude that feedback control of fluid dynamic
system is "not practical". However, it is well known that even in finite di-
mensional control systems one rarely has the ability to accurately sense all
states, so that some form of dynamic compenisation must be used.

This idea clearly extends to infinite dimensional problems and there is
a growing literature on observers/compensators for distributed parameter
systems. In this paper we consider a boundary control problem governed by
Burgers' equation. We selected this problem because Burgers' equation is
an infinite dimensional model that captures some phenomena (e.g., shocks)
often observed in fluid flows and because it is simple enough to provide
real insight into the problem. The goal is to show that it is possible to
use modern control theory to produce practical finite dimensional dynamic
compensators for boundary control of nonlinear partial differential equations
of the type that occur naturally in fluid dynamics.

We shall present a short summary of one approach (the optimal projec-
tion method due to Bernstein and Hyland) and show how this approach can
be used in conjunction with standard numerical schemes to produce a real-
izable low order controller. The optimal projection method is one of many
approaches to this problem. However, we shall concentrate on this method
because a very nice theory has already been developed (for bounded input
and output operators) and we are more interested in illustrating (to non-
experts) that recent results in distributed parameter control theory can be
used to design practical feedback laws, than in discussing the "best" ap-
proach to the problem. It will be clear from our presentation that we are
writing for those that are not necessarely "control experts". The extension
of the general theoretical results to unbounded input and output operators --

will appear in a forthcoming paper. However, for the compensators pre-
sented here, we do not need the most general theory since we use the finite
dimensional version of the optimal projection method.

As noted above it is almost impossible to observe the whole state. Con-
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Optimal Fixed-Finite-Dimensional Compensator 2

trols and sensors are limited to a few points or segments of the boundary, so
it is necessary to construct an appropriate observer (estimator) of the state
and design a feedback control law (called a compensator) based on the in-
formation available from the observed (estimated) state variable. Boundary
control and observation often leads to unbounded input and output opera-
tors. Stabilization by dynamic feedback or compensation has been consid-
ered by Curtain [5], Fujii [8], and Nambu (12] for classes of parabolic as well
as hyperbolic systems, including control and observation at the boundary.
All of these approprhes produce stabili•tion schemes that either have tho
same finite order as that of a high-order approximate model, or alternatively,
open-loop model reduction or closed-loop control reduction techniques are
applied to achieve a lower-order compensator. An advance was made by
Schumacher [151, when he gave a theory for designing finite-dimensional
compensators for a large class of systems, including parabolic and delay sys-
tems. However, in his theory it was assumed that the control and observation
operators are bounded. Curtain [4] presented an alternative compensator
design which applied to the same class of systems, except that unbounded

inputs and outputs were allowed. In [14], Pritchard and Salamon established
a framework based on semigroup theory for treating the linear quadratic reg-
ulator problem for infinite-dimensional systems with unbounded input and
output operators. Their approach is based on a weak formulation of the Ric-
cati equations which characterize the optimal feedback law in an appropriate
dual space.

Here we consider the problem of designing a fixed-finite-dimensional com-
pensator for a class of distributed system governed by Burgers' equation,
where the control and the observation are implemented at the boundary of

the domain. The possibility of applying this approach to distributed pa-
rameter systems was first suggested by Johnson in [9] and Pearson [13].
The idea of fixing the order of the finite-dimensional compensator, while
retaining the distributed parameter model was expanded and developed by
Bernstein and Hyland in [1] and [2]. The method extends the full order
LQG case to an "optimal fixed-finite-order compensator" characterized by
four equations; two modified Riccati equations and two modified Lyapunov
equations, coupled by an oblique projection whose rank is precisely equal to
the order of the compensator. Bernstein and Hyland assumed that the con-
trol and observation operators were bounded and hence boundary control
and observations were not covered by their theory.

We will present a Bernstein/Hyland type fixed-finite-dimensional com-
pensator design, which does extend to unbounded input/output problems.
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In Section 2 we discuss the existence of a finite-dimensional compensator for
parabolic distributed parameter systems with unbounded control and obser-
vation. In Section 3 we summarize the infinite-dimensional optimal projec-
tion theory from [1], and derive the corresponding equations and feedback
gains which characterize the fixed-finite-order compensator. In Section 4 we
present an example, construct the approximation schemes, and discuss the
computational algorithm used for the optimal projection design synthesis.
Finally, Section 5 contains numerical results and Section 6 is devoted to a
few closing remarks.

2 A Theoretical Existence Result

We consider the following abstract Cauchy problem

,i(t) = Az(t) + Bu(t), z(O) = z, E H (1)

y(t) = Cz(t) t > 0 (2)

where H is a Hilbert space, u(.,) E L2(0 T; m ), y(.) E L2(0 T; W), and
A is the infinitesimal generator of analytic semigrouD S(t) on H, generally
unstable, with exponential growth rate

wO lim t-' log IIS(t)MIL(H) > 0 (3)
t--oo

so that

[[S(t)[[,(H) < Me{(v+t) for all c > 0, t > 0 (4)

for some constant M = M(wo,c) > 1. Throughout the remainder of this
paper we let A denote the translation A = -A + wI, where w is fixed
and w > wo, so that A has well-defined fractional powers (A)P on H and
-A is the generator of a strongly continuous analytic semigroup S(t) on H
satisfying

11S(t)1lf_(H) <5 Me-' t >__ 0 (5)

In order to allow for unbounded operators B and C, we assume that B
E L(Rr, V) and C E £(W, W), where W and V are also Hilbert spaces such
that

D(A) _ W -4 H "- V (6)

with continuous dense injections. More precisely, we assume that B* is
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[A*]'bounded, or equivalently,

[A]-tB E £(R m , H) for 0 _< - < 1. (7)

Similarly, for the operator C we assume that

C(A4]-' E C(H,3W) for 0 < y < 1. (8)

It is helpful to interpret (1-2) in mild form. In particular, the solution
z(t) is given by

z(t) = S(t)z. + j S(t - s)Bu(s)ds, 0 < t < T (9)

and the output by

y(t) = CS(t)zo + C S(t - s)Bu(s)ds. (10)

We assume that S(t) is also an analytic semigroup on W and that the
following hypotheses are satisfied:

(H-i) There exists a constant b(T) > 0 such that for every T > 0,
fT" S(T - s)Bu(s)ds E W and

I10T S(T - s)Bu(s)dsj1w < b(T)Ilu(')IL2(O T;?..) (11)

for every u(.) E L2 (0 T; m ).

(H-2) There exists a constant c(T) > 0 such that for every T > 0,

I TT ItCS(t)x1IL2(O T;Wt)dt < c(T)IlxlIv (12)

for every x E W.

We now give sufficient conditions which imply that the system (1-2) can
be stabilized by a finite-dimensional compensator of the form

ib(t) = Acw(t) - Bcy(t) w(O) = w,2  (13)

u(t) = Cow(t) (14)
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where A, E RN'xNl, B, E RN-xm, and C, E W'xNV are suitably chosen
matrices. We need the following well-posedness result for the connected
system (1-2) and (13-14). This result and proof may be found in [4].

Proposition 2.1 Let (H-1)-(H-2) be satisfied, then for all z, E W, w, E
RNc there exists a unique solution pair z(t) and w(t) of (1-2) and (13-14).

This means that z(t) is continuous in H and absolutely continuous in V,
that (1) is satisfied for almost every t > 0 where u(t) is given by (14), and
that w(t) E 3 ?NC is continuously differentiable and satisfies (13) where y(t)
is given by (2).

In addition to hypotheses (H-1) and (H-2), we assume:

(H-3) Stabilizability Condition (S.C.)
There exists an operator F E C(H,Rm ) such that AF = A + BF
generates an analytic semigroup SF(t) = e(A+BF)I and SF(t) is Pxpo-

nentially stable on H, i.e.,

IISF(t)[(C(H) S Mpe-IF", for WF > 0. (15)

(H-4) Detectability Condition (D.C.)
There exists an operator G E C(W', H) such that AG = A + GC
generates an analytic semigroup SG(t) = e(A+GC)t and SG(t) is expo-
nentially stable on H, i.e.,

IISG(t)IIj(H) <M MGe t, for wG > 0. (16)

(H1-5) In addition to (H-3) and (H-4) there exists a finite-dimensional
subspace R C W, with dim R _< N. such that

(i) SF(t)R C R, for all t > 0,

(ii) Range G C R,
(iii) R _C D(AF).

Moreover, there exist linear maps i: -N4 - R, 7r : H -_ RNý such that

iri= IN,, iirx = x for T E R (17)

Note that (H-5) implies that 7rAFi is a well defined linear map on RN'. We

will show that the system

ib(t) = 7r(AF+GC)iw(t)-7rGy(t), w(O) = (18)
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u(t) = Fiw(t) (19)

defines a stabilizing compensator for the Cauchy problem (1-2). The follow-
ing result is a slight extension of Theorem 2.5 in [7] for unbounded inputs
and outputs.

Theorem 2.2 If (H-1)-(H-5) are satisfied, then the closed-loop system de-
fined by (1-2) and (18-19) is exponential stable.

Proof: Note that without loss of generality we can assume that dim R = N,.
By Proposition 2.1 it follows that the closed-loop system is a well-posed
Cauchy problem. Let zo E W, wo E RNc and z(t), w(t) be defined by (1-2)
and (18-19), respectively. Since z(t) E W, if x(t) is defined by

x(t) = iw(t) - z(t) t > o,

then x(t) belongs to W and it is straightforward to show that

ti(t) = 7r AF i w(t) + 7r GC x(t). (20)

Therefore,

x(t) = ilrSF(t)iwo+0 ilrSF(t- s)iirGCx(s)ds - z(t)I
= SF(t)iwo+j SF(t-s)GCx(s)ds - z(t)

= S(t)iwo + j S(t -s) [BFiw(s) + GCx(s)]ds

- S(t) zo + 0 S(t - s) B u(s) dst
= S(t) x(O) + j S(t - s) GC x(s) ds,

which implies that x(t) = SG(t) x(O). The stability of x(t), w(t) and z(t)
follows.
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3 Optimal Projection Theory

Consider the steady-state fixed-order dynamic compensator problem, de-
fined by the infinite-dimensional control system

i(t) = Az(t) + Bu(t) + Hlq(t) (21)

with measurements
y(t) = Cz(t) + n 2 i7 (t). (22)

The objective is to design a finite-dimensional fixed-order dynamic compen-
sator

i.(t) = Acz,(t) + By(t) .(23)

u(t) = C'zM(t) (24)

which minimizes the steady-state performance criterion

J(ABC,) = li R 1z(s), z(s)) + u(s)TR21(8) ds (25)t-*oo

where the operators A, B and C satisfy all the assumptions given in the
previous section and E[.] is the expectation. In addition, assume that the
state and measurements are corrupted by a white noise 77(t) in the Hilbert
space H, with zero-mean Gaussian, H1 E C(ft, H), H2 E C(ft, W), RI E
,C(H) is self-adjoint and nonnegative definite, and that R2 is an in x 77
symmetric positive-definite matrix. We assume that the disturbance and
measurements are independent, i.e., HI H1 = 0, VI = H 1 H* E £(H) is
nonnegative definite and of trace class, and that V2  H 2 Hj E Rtx" is
positive definite. Also, it is assumed that the initial state z(0) = z0 is
Gaussian and independent of 71(.). The compensator will be assumed to be
of fixed, finite order N, (i.e., z,(t) E RNc) and the optimization is performed
over A, E , B, F •N~xf and C, E 3m xN,

If one introduces the augmented state space 7- " H x N-, then tL.

closed-loop system becomes a linear system on X. Consequently, define the
closed-loop operator A : D(A) g 7W -- 7 on the dense domain 1(A) =

1D(A) x WN, by

A= BAC BC. = 0 ] + [BC ACc]
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Since the operator
A 0 :D (A) -+ Xi,

generates an analytic semigroup

0 I~c t > 0,

then conditions (7)-(8) imply that A is also closed and generates an analytic
semnigroup eAt on RL (see [10]). To guarantee that J is finite and indepen-
dent of initial conditions we restrict our attention to the set of admissible
compensators defined by

S = {(Ac, Be, C,) : eAt is exponentially stable}. (26)

Tf (A,, Be, CG) E S, then there exist a > 1 and 0 > 0 such that

IleA1ll <• ae-3 t >_ 0. (27)

Moreover, we know from Theorem 2.2 above that S is non-empty. We now
state some results found in [11 and [21.

Lemma 3.1 If Q, and P E C(H) have finite rank and are nonnegative
definite, then QýP is nonnegative semi-simple. Furthermore, if rank (QP) =
Nc, then there exist G and F E £(H, RNý) and a positive semi-simple matrix
M E RN" ×N such that

QýP = G'MF (28)

FG* = IN, (29)

Proof: Bernstein and Hyland give a complete proof of this result in [1]. Here
we outline their proof in order to illustrate the form of the factorization of

Q•P and to provide a description of the operators G and F. Since Q and
P have finite rank, there exists a nnite dimensional subspace Z C H such
that QZ C Z, QZ-± = 0, PZ C Z and 15Z' = 0. Hence there exists an

orthonormal basis for H and in this basis Q and P have the infinite matrix
representations 0: Q 0] 0= 0]

0 0 0 0
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where Q1, P1 E ×r"' and r = dim Z. Consequently, there exists an invert-
ible 4ID E R"'X such that A = Q 1P is nonnegative and diagonal and
0Q is nonnegative and semi-simple. If rank ( Nt) No, then it is clear that
ýD can be chosen so that

where A E WNx , Nc is positive and diagonal. Hence,

(D I0 "

and if we define G, M and Ir by

G = [ST o] 0)[r ]

M = S-AS.

for any invertible S E RNcXNvr then G, r and M provide the desired factor-
ization and this completes the proof.

Throughvut the paper we will refer to G, r and M satisfying the above
lemma as a (G -- M - r) - factorization of QP. For convenience we define

S= BIl-IB* and • = C'Vj-'C and let IN, and III denote respectively
the N, x N, identity matrix and the identity operator on H, respectively.
We state Bernstein's and Hyland's main theorem which provides a set of
necessary conditions that characterize the optimal steady-state fixed order
dynamic compensator for bounded input and output operators (see [1]).

Theorem 3.2 Let B and C be bounded operators and let N, be given and
suppose that there exists a controllable and observable dynamic compen-

sator (Ar, Bo, C) E S of order N, which minimizes J given by (25), then
there exist nonnegative definite operators Q, P, Q, and P on H such that
Ac, Be, and C, are given by

A, = r(A- Q - EP)G" (30)
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B, = FQCV2-7 (31)

C, = -R2-'B*PF" (32)

for some (G - M - F) - factorization of QP and such that, with T - GTr E
£(H), the following conditions are satisfied:

Q D(A*) -- V(A) P : D(A)- - D(A*)

H H--+D(A) P : H-4D(A')

rank (9) = rank (I) = rank (QP)

and

0 (A - rQE)Q + Q(A - rQE)" + V, + rQEQr" (33)

0 = (A - EP-r)*P + P(A - EPr) + R, + irPEP7- (34)

0 = [(A - EP)Q + Q(A - fP)" + Q-EQ] r. (35)

0 = [(A-QU)*P+ P(A-QU)+PEP]-r. (36)

Note that these necessary conditions consist of a system of four operator
equations, including a pair of modified Riccati equations and a pair of mod-
ified Lyapunov equations which are coupled by the operator T E C(H). The
operator T is idempotent, since 7-2 = r7- = G*TGTF = G*I,,F = G-' = r.
In general T is an oblique projection and may not be orthogonal since there
is no requirement that T be self-adjoint. Moreover, we note that in view of
Lemma 3.1, Theorem 3.2 applies to (SACS-', SBc, CCS-') for any invertible
S E •NcxNc, since the (G - M - P)-factorization of 0^, used to determine
Ac, Bc and Cc, is not unique. However, the operator 'r remains invariant
over the class of factorizations. An easy computation yields the following
identities:

Q=-Q and P = PT. (37)

It is helpful to have an alternative form of the optimal projection equa-
tions to actually compute the optimal fixed-order compensator of the ap-
proximating finite-dimensional plant. The following result for bounded input
bounded output operators may be found in [1].

Proposition 3.1 If B and C are bounded, then the optimal projection equa-
tions (33)-(36) are equivalent, respectively, to

0 = AQ + QA* + VI - QZQ + r-±QUQr- (38)
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0 = AP + PA + R1 - PEP + rIPEPr± (39)

0 = Ap( + QAp + QUQ - r±QEQTI (40)

0 = A;J6 + PAq + PEP -,•rPEPrj (41)

where
71r = IH - r, AP =A-EP and Aq=A-Q-. (42)

This form of the optimal projection equations shows that there is a
connection between Theorem 3.2 and the standard LQG result when dim
H = N < oo. In this case, we note that the (G - M - F)-factorization of
Q15 when N, = N is given by G = r = IN and M = 0Q. Since r = IN
and rL = 0, it follows that (38)-(39) reduce to the standard observer and
regulator Riccati equations.

To obtain a geometric interpretation of the optimal projection we intro-
duce the "quasi-full-state" estimate

i(t) = G*zc(t) E H, (43)

so that Ti(t) = i(t) and z,(t) = rm(t). Hen'ce, the closed-loop system can
be written as

i(t) = Az(t) + B(cr2-(t) (44)

z(t) = r(A + BC( - &CC) ri(t) + rB&Cz(t) (45)

where
fC = QC*V 1-' and C=-R-'B*P. (46)

This shows that the geometric structure of the quasi-full-order compen-
sator is dictated by the projection T. Sensor inputs r&[Cz are annihilated
unless they are contained in 1Z(,r) = '-(Tr)', while ri employed in the con-
trol input is contained in 1Z(r). Consequently, TZ(r) and 7Z(Tr) are the
control and observation subspaces of the compensator, respectively. In order
to modify the previous results so that they will apply directly to unbounded
B and C operators, care must be exercised to precisely define the weak
forms of (33)-(36) and (38)-(41). We shall not consider this problem in this
short note. However, we shall use these systems to guide the approximations
below.
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4 Finite Dimensional Approximation

In general, the optimal projection equations (38)-(41) are infinite dimen-
sional operator equations. To actually use these equations to compute the
optimal fixed-finite-order compensator, a finite dimensional approximation
is needed (see [2] for details).

Let HN for N = 1,2, .-- , be a sequence of finite dimensional linear
subspaces of H and let pN H --+ HN be the canonical orthogonal
projections. Let AN E C(HN), BN E C(Rm , RN), CN E £(HN, W),
RNe £(HN) and VN E £(HN) be given and consider the approximating

system
N( AN zN(t) + BNuN(t) HN17N(t) (47)

yN(t) = CNzN(t) + H2r7N(t). (48)

The goal is to design a sequence of finite-dimensional dynamic compensators
of fixed order N, of the form

i4N(t) N ANzN(t) +- BNyN(t) (49)

uN(t) = cN zN (t), (50)

which minimizes the performance criterion

JN(A N,BN, CN) ef lim - E[(RN ZN(S), zN(s)) + u(s)TR 2u(s)] ds.

(51)

Now, for each N = 1, 2,..., let (0-NJ kN be a basis for HN. Also, for any' ~ ~ I j=l

linear operator FN with domain and range in HN, unless otherwise noted,
we use the same symbol FN for its matrix representation with respect to
the basis chosen. Let %pN denote the kN-square Gram matrix corresponding

to the basis NJ,=N (e.g., %pN = [(ON fN)] ). Note that

(AN)* = (1pN)-'(AN)TqN (BN)* - (BN)TqN (52)
(CN)* = (qVN)-I(CN)T (EN) _ BN I-(BN)TqvN (53)

(N) = (pN (N)TpN -N N)(cN)Tv CN
T (54)
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and if we define the kN x kN nonnegative definite matrices

QN dLe.f QN(qN)-_ pN def 4,NpN

VN Ldef vINe4fN)_1  pN df 1NN

-N d BNR-1(BN)T --N def NTrCN0 -N~j(B 0 = (CN)Tv2-1N

then the matrix equivalence of the operator equation (38)-(41) become
0 NQN +QN(AN)T + VN fNN•

o -
-

"O 0N

N•NS-N N N T (55)1 ."0 E0 Q0O (r )

o = (AN)TP• + P•AN + p0- p N

+(-rI) P0 S0P r0 (56)
0 N ^N -N N T fN-N iN

0 = AP. Qo + Qo (Apo) + Q0 0 Q0
N N-N-N Qo Eo Q•o(r )T  (57)

N)~ TT,01 N + pN Npo = (A0 +AN~Q '

-(TI ), 0 P r.(58)

The approximating optimal dynamic compensator (AN, B,,C[) of order
Nc is then given by

AN= (AN N-N59)

- 0• - oNQp(oN(N)T vo) (60)

C -= -Rj-1(B1v)IP(oN r (61)

where ro , GO E •N~xkN and MON E •N•×N• provide a (Go M - M -
factorization of QoNP0N.

We turn now to an example. Consider Burgers' equation, with Neumann
boundary control given by

a (t,X) = -2 z(t,X)-z(t,)z(t,x), -0< x <1, t >0 (62)

z(0,x) = Zo(Z) (63)
49 a
5-Z(t,O) = -ul(t), -z(t, 1) = u2 (t), (64)

I I IOI
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and observations

Y1(t) = z(t,O) (65)

y2 (t) = z(t,1), (66)

where c = 1 > 0 and Re is the Reynolds number. Initially, we consider
the linearized Neumann boundary control problem

a z(t'x) = C-2z(t,x), 0<x<l, t>0 (67)
19X 2

z(0,X) = Z(o) (68)

,-z(t,0) = -ui(t), -z(t, 1) = U2 (0) (69)

We will apply the linearized feedback control laws constructed from this
model to the nonlinear Burgers' equation. System (67)-(69) can be placed
into the standard state space framework by defining the operator A, on
H = L 2(0, 1) by

A, - CoIt(70)

for all € E D(A,) = {E e H 2(0, 1) : 0'(0) = €'(1) = 0}. Define W = V* =

H2(0, 1) =D(A4) and let B : -- V be defined by B = AMwhereA =
-A, +wI and we assume that w is not an eigenvalue of A, with homogeneous
Neumann boundary conditions, so that A is boundedly invertible on L2 (0, 1 ).
The Neumann map A( is defined by the boundary system given in [11, pages
53-56]. Let C : W -+ R2 defined by

C =[ (0)] (71)

The boundary control problem (67)-(69) can be represented by a differential
equation

d
t = Az(t) + Bu, z(0) = z. (72)

y(t) = Cz(t). (73)

It is well known that A, generates an analytic semigroup S(t) on H. More-
over, the spectrum a(A,) of A, consists of all eigenvalues A,', n = 0, 1,2,...
given by A,, = -cn27r 2 and for each eigenvalue A,, the corresponding eigen-
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function 0, is given by

00(x) = 1 .n(X) = Vi2cos(nirx), 0 < x < 1. (74)

One can easily verify conditions (7)-(8), by taking -y = 1 (see [11]). It is
straightforward to show that (H-1)-(H-5) are valid.

5 Numerical Results

Now, we formulate a specific approximation scheme for the boundary control
problem (74). For each N = 2,3,.. let divide the unit interval [0,1] into N
equal subinterval [xi, xi+I], xi = VT-f, i = 1, 2,-.., N + 1. Let HN = Span

{ 1N=1 where h N (.) are the standard hat functions defining continuous

piecewise linear splines (see [3]). Note that kN = dim HN = N + 2 and let
the approximate solution zN(t, x) of z(t,x) for equation (72)-(73) be given
by

N+1

zN(t,'x) - : zN(t)hN(x) (75)
t=O

for some zN (t) E -R, i = 0, 1,..., N + 1. Standard finite element approxima-
tions yield the ODE system

dzN (t) = A NzN(t) + BNU(t), zN(o) = zN (76)
dtC0

yN(t) = CNzN(t) (77)

where the matrices AN, BN, CN can be easely computed by using the
Ritz-Galerkin approximation.

For our numerical example, we set a = & the initial condition z0 (x) =
sin(7rx), rl = vi = 1 and r2 = V2 = 10-. Also, R1 = rnIH, R 2 = r2Im,
V1 = vyll, and V2 = v21t. Therefore, it follows from Section 3 that RN =

0

rluN and VoN = Vl(VpN)-1 where IN is the Grain matrix. In this numerical
example we will compare the approximating optimal LQG (i.e., N, = N + 2)
with the dynamic compensators of various order N,. The optimal projection
equations (55)-(58) were solved using the homotopic continuation algorithm
described in [16]. The approximating controllers defined by the linear fixed-
order compensator (Bff and Cif) were applied to Burgers' equation (62)-
(66).
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We note that N = 32 produces converged optimal LQG designs. Hence,
the reduced order compensators were tested on both the linear and nonlinear
problem using the N = 32 order finite element model.

In the full order case N = 32 and N, = 34, the converged feedback and
observer functional gains are given in Figures 1 and 2, respectively. Since
we are controlling the flux at each end point x = 0 and x = 1, we have
two feedback functional gains, the one plotted with solid line is the flux
control gain at the origin and the one plotted with dashed line is the flux
control at the end point x = 1. Similarly, since we are sensing the flow
at the origin and the end point, we have two observer gains (solid line for
observer gain at the origin and dashed line for the observer gain at x = 1).
Next, we applied the full order controller to Burgers' equation resulting in
the nonlinear closed-loop trajectory given in Figure 3.

In the fixed-order case, we considered the accuracy of the impulse and
step responses of the various reduced order compensator designs compared
to the corresponding responses of the full order LQG design. Figure 4 il-
lustrates the linear closed-loop impulse response for the full-order LQG and
reduced order compensator (of order N, = 16) designs. The impulse re-
sponse of the linear closed-loop system for the 16th-order compensator is
in perfect agreement with the LQG response. Note that in Figure 4 we see
only one plot for both designs because both plots are essentially the same.
Similar trends are seen (Figure 5) in the comparisons of the step responses
(for the same design case) with the corresponding LQG responses.

For the nonlinear closed-loop response, the 16th-order compensator was
applied to Burgers' equation and we see (in Figure 6) excellent agreement
with the full order closed-loop trajectory response. Hence, replacing the
32nd-order optimal LQG controller by a 16th-order compensator produces
a closed-loop system with minor performance degradation.

We also compared the performances of the closed-loop system of the 4th-
order compensator with the full order LQG responses. Figures 7 and 8 are
the impulse and step responses of the linear closed-loop system, respectively.
If one compares these responses with the corresponding responses for the full
order LQG controller shown in Figures 4 and 5, then it is clear that the 4th-
order compensator performs almost as well as the full order LQG controller.
Similar comments hold for the nonlinear closed-loop responses. For example,
the 4th-order compensator response (Figure 9, solid line) compares well to
the LQG response (Figure 9, Dashed lines), especially after time T = 1.0.
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Figure 1: Functional Control Gains for the LQG Case, N=32
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Figure 2: Functional Observer Gains for the LQG Case, N=32
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Figure 3: Closed-Loop Trajectory for the LQG Case, N---32
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Figure 9: Closed-Loop for the LQG & Fixed-Order
Cases, N=-32, N-=4

6 Conclusion

The purpose of this note was to show that finite dimensional dynamic com-
pensators could be used to control a nonlinear partial differential equation
without significant loss in performance. Although there is considerable the-
oretical and numerical work for bounded input and bounded output oper-
ators, numerical results for the unbounded control and observation opera-
tors are not as fully developed as the theory. For example, several authors
have considered questions of existence of stabilizing dynamic compensators
(even for nonlinear plants [6]) for boundary control problems. However,
approaches, such as the optimal projection method, that result in a "com-
putable" fixed order compensator have not been applied to more general
boundary control problems. Although the numerical results presented here
show that the optimal projection method can produce excellent designs for
problems with boundary control and observation, there are a number of the-
oretical and numerical issues that need to be resolved in order to extend this
approach to practical problems of this type.
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